
Name Surname
Job Title & Company

Title of the presentation, if long in
two rows
AWS Serverless for Java Developers
with Quarkus and GraalVM

Alexander Burkard
Technical Consultant @ NTT DATA

Alexander Burkard

• Studied Computer Science
• Located near munich
• Software Engineer, Architect, Trainer, Teamlead, …
• Married and father of two girls
• Likes

• being in company
• coding
• playing ball sports (kind of on hold)
• reading books (definitely on hold)

• Does not like so much
• running
• romantic movies

Technical Consultant
NTT DATA

AWS Serverless for Java Developers with Quarkus and GraalVM

Is it really that simple?

Let's find out!

The Ordering Application - Automotive industry

Ordering Backend

Relational
Database

Ordering UI
• Java Enterprise Application
• Monolithic 3-Tier Architecture
• Runs on premises
• Rolled out globally
• Many Interfaces

The Ordering Application - Cloud Migration

Add & Delete

Ordering Backend

Relational
Database

Ordering UI

Order Search
Backend

Elastic
Search

Order Search UI

AWS Cloud

What is AWS Lambda?

Memory [MB] Price per Millisecond [$]
512 0.0000000083

1024 0.0000000167

Pay per
request

Scaling and
load
balancing
built-in

Availability
and fault
tolerance
built-in

No servers
to
provision
or manage

Sustainable Focus on
business
logic

A serverless compute with the following characteristics

Example: 500.000 request * 1.000 ms = 8$

What Programming Languages (Runtimes) are used out there for
AWS Lambda?

Java
~5%

Python
~25%

Node.js
~65%

Others
~5%

Why is this, when Java is one of the most popular programming languages?

Why is Java not a Popular Lambda Runtime?

Runtime Cold start [ms]
Java 2000-6000
Python 500
Node.js 700
Top Tier (Go,
Rust, …)

12

Runtime Warm start [ms]
Java 11
Python 11
Node.js 17
Top Tier (Go,
Rust, …)

9

• Java memory usage is up to 7-times higher than other runtimes ($)
• Java deliverable is up to 15-times bigger than other runtimes

Why would anybody choose Java?

Java & Serverless - Do we need to go with something like this,

while we are looking for something like this?

Quarkus with Graal VM to the Rescue

Quarkus was created to enable Java developers to create applications for a modern, cloud-native
world. Quarkus is crafted from best-of-breed Java libraries and standards (including Microprofile
and Spring).

Quarkus + GraalVM address the Java issues in the serverless world.

Java Application

Compile to
Bytecode

Compile to native
image

(via GraalVM)

Use a Dockerized Native Build in your Quarkus Project

JVM Build
build:

mvn clean package

Native Build with docker
build-native-using-docker:

mvn clean package -Pnative -Dquarkus.native.container-build=true

Quarkus with Graal VM – The Numbers

from https://quarkus.io

Memory Usage (RAM)

Native

Traditional Cloud Native Stack

Cold start

Traditional Cloud Native Stack

12 MB

130 MB

0.016 Seconds

4 Seconds

Size of Deliverable (functions.zip)

Native

Traditional Cloud Native Stack

17 MB

60 MB

Java & Serverless!

Trade-offs

Massive increase in Build
Time

Build + Unit Test via maven
• JVM 10 seconds
• Native 3 minutes

• Turn around time for local
Development

• CICD pipeline feedback

Closed World Principle Everything needs to be
known at compile time

• No reflection, dynamic class
loading, dynamic proxy, JNI(Java
Native Interface) at runtime

• These need to be registered at
build time

• Crashes at runtime
No JVM When you compile to native

you are not running on a
JVM

• No JVM based thread and memory
analysis

• No Java Debugging (you need to
go with GDB, Vtune, etc.)

• No platform independence
• No Just In Time Compiler

Conclusion – There is no silver bullet

You need to ask yourself some questions and make the decision for your
project

Is it Java?

Do I care
about the
cold start

delay?

Can I
compensate
the cold start

delay?

Is there a
price

reduction?

Is there a new
feature that
solves my

issue?

-> The native build adds complexity (Tooling, Local Development, Building,
Testing, …) to your project.

THANK YOU

